62 research outputs found

    Southern Ocean isopycnal mixing and ventilation changes driven by winds

    Get PDF
    Observed and predicted changes in the strength of the westerly winds blowing over the Southern Ocean have motivated a number of studies of the response of the Antarctic Circumpolar Current and Southern Ocean Meridional Overturning Circulation (MOC) to wind perturbations and led to the discovery of the``eddy-compensation" regime, wherein the MOC becomes insensitive to wind changes. In addition to the MOC, tracer transport also depends on mixing processes. Here we show, in a high-resolution process model, that isopycnal mixing by mesoscale eddies is strongly dependent on the wind strength. This dependence can be explained by mixing-length theory and is driven by increases in eddy kinetic energy; the mixing length does not change strongly in our simulation. Simulation of a passive ventilation tracer (analogous to CFCs or anthropogenic CO2_2) demonstrates that variations in tracer uptake across experiments are dominated by changes in isopycnal mixing, rather than changes in the MOC. We argue that, to properly understand tracer uptake under different wind-forcing scenarios, the sensitivity of isopycnal mixing to winds must be accounted for

    Quantifying Eulerian Eddy Leakiness in an Idealized Model

    Get PDF
    An idealized eddy‐resolving ocean basin, closely resembling the North Pacific Ocean, is simulated using MITgcm. We identify rotationally coherent Lagrangian vortices (RCLVs) and sea surface height (SSH) eddies based on the Lagrangian and Eulerian framework, respectively. General statistical results show that RCLVs have a much smaller coherent core than SSH eddies with the ratio of radius is about 0.5. RCLVs are often enclosed by SSH anomaly contours, but SSH eddy identification method fails to detect more than half of RCLVs. Based on their locations, two types of eddies are classified into three categories: overlapping RCLVs and SSH eddies, nonoverlapping SSH eddies, and nonoverlapping RCLVs. Using Lagrangian particles, we examine the processes of leakage and intrusion around SSH eddies. For overlapping SSH eddies, over the lifetime, the material coherent core only accounts for about 25% and about 50% of initial water leak from eddy interior. The remaining 25% of water can still remain inside the boundary, but only in the form of filaments outside the coherent core. For nonoverlapping SSH eddies, more water leakage (about 60%) occurs at a faster rate. Guided by the number and radius of SSH eddies, fixed circles and moving circles are randomly selected to diagnose the material flux around these circles. We find that the leakage and intrusion trends of moving circles are quite similar to that of nonoverlapping SSH eddies, suggesting that the material coherence properties of nonoverlapping SSH eddies are not significantly different from random pieces of ocean with the same size

    Mixing by ocean eddies

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 163-175).Mesoscale eddies mix and transport tracers such as heat and potential vorticity laterally in the ocean. While this transport plays an important role in the climate system, especially in the Southern Ocean, we lack a, comprehensive understanding of what sets mixing rates. This thesis seeks to advance this understanding through three related studies. First, mixing rates are diagnosed from an eddy-resolving state estimate of the Southern Ocean, revealing a meridional cross-section of effective diffusivity shaped by the interplay between eddy propagation and mean flow. Effective diffusivity diagnostics are then applied to quantify surface mixing rates globally, using a, kinematic model with velocities derived from satellite observations; the diagnosed mixing rates show a rich spatial structure, with especially strong mixing in the tropics and western-boundary-current regions. Finally, an idealized numerical model of the Southern Ocean is analyzed, focusing on the response to changes in win( stress. The sensitivity of the meridional overturning circulation to the wind changes demonstrates the importance of properly capturing eddy mixing rates for large-scale climate problems.by Ryan Abernathey.Ph.D

    Quantifying Eulerian Eddy Leakiness in an Idealized Model

    Get PDF
    An idealized eddy‐resolving ocean basin, closely resembling the North Pacific Ocean, is simulated using MITgcm. We identify rotationally coherent Lagrangian vortices (RCLVs) and sea surface height (SSH) eddies based on the Lagrangian and Eulerian framework, respectively. General statistical results show that RCLVs have a much smaller coherent core than SSH eddies with the ratio of radius is about 0.5. RCLVs are often enclosed by SSH anomaly contours, but SSH eddy identification method fails to detect more than half of RCLVs. Based on their locations, two types of eddies are classified into three categories: overlapping RCLVs and SSH eddies, nonoverlapping SSH eddies, and nonoverlapping RCLVs. Using Lagrangian particles, we examine the processes of leakage and intrusion around SSH eddies. For overlapping SSH eddies, over the lifetime, the material coherent core only accounts for about 25% and about 50% of initial water leak from eddy interior. The remaining 25% of water can still remain inside the boundary, but only in the form of filaments outside the coherent core. For nonoverlapping SSH eddies, more water leakage (about 60%) occurs at a faster rate. Guided by the number and radius of SSH eddies, fixed circles and moving circles are randomly selected to diagnose the material flux around these circles. We find that the leakage and intrusion trends of moving circles are quite similar to that of nonoverlapping SSH eddies, suggesting that the material coherence properties of nonoverlapping SSH eddies are not significantly different from random pieces of ocean with the same size

    Estimating Ocean Surface Currents With Machine Learning

    Get PDF
    Global surface currents are usually inferred from directly observed quantities like sea-surface height, wind stress by applying diagnostic balance relations (like geostrophy and Ekman flow), which provide a good approximation of the dynamics of slow, large-scale currents at large scales and low Rossby numbers. However, newer generation satellite altimeters (like the upcoming SWOT mission) will capture more of the high wavenumber variability associated with the unbalanced components, but the low temporal sampling can potentially lead to aliasing. Applying these balances directly may lead to an incorrect un-physical estimate of the surface flow. In this study we explore Machine Learning (ML) algorithms as an alternate route to infer surface currents from satellite observable quantities. We train our ML models with SSH, SST, and wind stress from available primitive equation ocean GCM simulation outputs as the inputs and make predictions of surface currents (u,v), which are then compared against the true GCM output. As a baseline example, we demonstrate that a linear regression model is ineffective at predicting velocities accurately beyond localized regions. In comparison, a relatively simple neural network (NN) can predict surface currents accurately over most of the global ocean, with lower mean squared errors than geostrophy + Ekman. Using a local stencil of neighboring grid points as additional input features, we can train the deep learning models to effectively “learn” spatial gradients and the physics of surface currents. By passing the stenciled variables through convolutional filters we can help the model learn spatial gradients much faster. Various training strategies are explored using systematic feature hold out and multiple combinations of point and stenciled input data fed through convolutional filters (2D/3D), to understand the effect of each input feature on the NN's ability to accurately represent surface flow. A model sensitivity analysis reveals that besides SSH, geographic information in some form is an essential ingredient required for making accurate predictions of surface currents with deep learning models

    Global surface eddy diffusivities derived from satellite altimetry

    Get PDF
    [1] Velocities derived from AVISO sea-surface height observations, adjusted to be nondivergent, are used to simulate the evolution of passive tracers at the ocean surface. Eddy mixing rates are derived from the tracer fields in two ways. First, the method of Nakamura is applied to a sector in the East Pacific. Second, the Osborn-Cox diffusivity is calculated globally to yield estimates of diffusivity in two dimensions. The results from the East Pacific show weak meridional mixing at the surface in the Southern Ocean (&1000 m2 s−1, consistent with previous results) but higher mixing rates (~3000–5000 m2 s−1) in the tropical ocean. The Osborn-Cox diagnostic provides a global picture of mixing rates and agrees reasonably well with the results from the East Pacific. It also shows extremely high mixing rates (~104 m2 s−1) in western boundary current regions. The Osborn-Cox diffusivity is sensitive to the tracer initialization, which we attribute to the presence of anisotropic mixing processes. The mixing rates are strongly influenced by the presence of a mean flow nearly everywhere, as shown by comparison with an eddy-only calculation, with the mean flow absent. Finally, results are compared with other recent estimates of mixing rates using Lagrangian and inverse methods
    corecore